6 research outputs found

    Novel Biomarker Identification Approaches for Schizophrenia using fMRI and Retinal Electrophysiology

    Get PDF
    University of Minnesota Ph.D. dissertation. November 2017. Major: Biomedical Engineering. Advisors: Kelvin Lim, Theoden Netoff. 1 computer file (PDF); vi, 109 pages.Schizophrenia is a chronic mental illness. The exact cause if schizophrenia is not yet known. Extensive research has been done to identify robust biomarkers for the disease using non-invasive brain imaging techniques. A robust biomarker can be informative about pathophysiology of the disease and can guide clinicians into developing more effective interventions. The aim of this dissertation is two folds. First, we seek to identify robust biomarkers using resting state fMRI activity from a cohort of schizophrenic and healthy subjects in a purely data driven approach. We will calculate multivariate network measures and use them as features for classification of the subjects into healthy and diseased. The network measures will be calculated using nodes defined by the AAL anatomical atlas as well as a functional atlas constructed from the fMRI activity. Network measures with high classification rate may be used as potential biomarkers. We will employ double cross-validation to estimate generalizability of our results to a new population of subjects that were not used in biomarker identification. Second, we seek to identify biomarkers using electroretinogram (ERG). We will use a data driven approach to classify individuals based on the pattern of retinal activity they exhibit in response to visual stimulation. Characteristics of the ERG result in high classification rate are presented as potential biomarkers of schizophrenia

    Data Driven Classification Using fMRI Network Measures: Application to Schizophrenia

    Get PDF
    Using classification to identify biomarkers for various brain disorders has become a common practice among the functional MR imaging community. Typical classification pipeline includes taking the time series, extracting features from them, and using them to classify a set of patients and healthy controls. The most informative features are then presented as novel biomarkers. In this paper, we compared the results of single and double cross validation schemes on a cohort of 170 subjects with schizophrenia and healthy control subjects. We used graph theoretic measures as our features, comparing the use of functional and anatomical atlases to define nodes and the effect of prewhitening to remove autocorrelation trends. We found that double cross validation resulted in a 20% decrease in classification performance compared to single cross validation. The anatomical atlas resulted in higher classification results. Prewhitening resulted in a 10% boost in classification performance. Overall, a classification performance of 80% was obtained with a double-cross validation scheme using prewhitened time series and an anatomical brain atlas. However, reproducibility of classification within subjects across scans was surprisingly low and comparable to across subject classification rates, indicating that subject state during the short scan significantly influences the estimated features and classification performance
    corecore